Possible effects of climate change on food & waterborne illness

Dr. Anthony Gatt MD, Dip IMC RCS (Ed), MSc, MMCFD

Infectious Disease Prevention & Control Unit,
Department of Health Information and Disease Prevention
Why is Salmonella Important?

- The 2nd commonest pathogen causing FWD in EU1
- 71\% of all laboratory confirmed OB in EU2
- 160,649 confirmed cases in EU in 20061
- Salmonella causes 1.3 million illness & 500 deaths/year in the USA3

- S. Enteritidis & S. Typhimurium1,2 – predominant serovars causing human infections

- Major sources1,7: S. Enteritidis – eggs/poultry meat

 S. Typhimurium – pigs, poultry & bovine meat
Reported Salmonella Cases in Malta 1990-2008

Year

Rate/100,000
Reported Salmonellosis Cases in Humans in Some EU Countries 2005

Cases/100,000 Population

Country

Cyprus France Germany Ireland Italy Luxembourg Malta Holland Portugal Spain Sweden UK EU mean
Salmonella Growth

- Salmonella grows at room temperatures

- Temperature misuse of food is a major risk factor4,5,6:
 1. Inappropriate storage
 2. Inadequate cooking
 3. Preparation of food too far in advance

- The effect of temperature on growth of salmonella in food is now better understood10

- Laboratory rate of salmonella growth directly related to temperature range of 7.5 - 48°C (optimum 37°C)11
Foodborne Illness & Temperature8,15

- Time series analysis in 10 European populations* comparing atmospheric temperatures and number of salmonella cases in most countries
 - Clear & linear association between temperature and no. of salmonella cases in most countries
 - Threshold (>7.5°C) present in some countries studied
 - The relationship is linear in most countries

- Compared the effect of temperatures in the previous 2 months on disease
 - Lag time effect of a rise in ambient temp & onset of disease was max in the first week and diminishes up to 5 weeks (UK)

- Temperature influences transmission of infection in about 35% of all cases in most of the studied countries

* Poland, Scotland, England & Wales, Estonia, The Netherlands, Czech Rep, Spain, Switzerland, Denmark, Slovak Rep
Foodborne Illness & Temperature

- Five Australian city study12: a clear linear relationship and lag period of 1 month;
 - No threshold temps were found;
 - 5-10\% case rise/°C rise in ambient temp.

- The Netherlands, 2003 – 50\% rise S. Enteritidis;
 - 12.6 \% rise in cases/°C attributed to temperature effect;
 - Lag time effect largest 1st week before tailing off up to 5 weeks;
 - Rise also noted to be due to increased importation of eggs from other EU countries.

- In contrast the effect of temp. rise on campylobacter transmission is weak14

- Food poisonings significantly related to ambient temp. above 7.5°C in the same month & previous month 16,17

- Regional studies in UK: no association with relative humidity and amount of rainfall8.

- IID in Malta correlated with peak summer temperatures(2005)
Scatter plot of Salmonella Cases and Temperatures 1990 - 2008 in Malta

$y = 0.61330x - 6.3033$

$R^2 = 0.2529$
Salmonella Cases (aggregates 1990-2008) per Month with Maximum Temps.
Association Between Cases & Ambient Temperatures

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th></th>
<th>Cases</th>
<th></th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average temp</td>
<td>0.5124</td>
<td>Min temp</td>
<td>0.5238</td>
<td>Max temp</td>
<td>0.5029</td>
</tr>
<tr>
<td>Average temp: 1 month lag time</td>
<td>0.4936</td>
<td>Min temp: 1 month lag time</td>
<td>0.4807</td>
<td>Max temp: 1 month lag time</td>
<td>0.5003</td>
</tr>
<tr>
<td>Average temp: 2 month lag time</td>
<td>0.3302</td>
<td>Min temp: - 2 month lag time</td>
<td>0.3032</td>
<td>Max temp: 2 months lag time</td>
<td>0.3490</td>
</tr>
</tbody>
</table>

- Pearson’s correlation coefficient values. Stat 2 package
Limitations

- Small numbers
- Under-reporting
- Late notifications
- Variations in surveillance over time
- Improved laboratory techniques
- Physician heightened awareness on investigations
Conclusions

- Higher & sustained temperatures for longer periods of time are likely to lead to increasing cases of salmonellosis.

- The time lag of 1 - 4 weeks of rising salmonella cases suggests that temperatures might be influential earlier in the production phase11!

- New and sustained strategies are needed to combat rising salmonellosis.
Acknowledgments

- Dr. Charmaine Gauci, Director Health Promotion and Disease Prevention, for her help and direction

- Dr. Neville Calleja, Director Department of Health Information, for doing the statistical analysis

- Dr. Charles Galdies, Manager Meteorological Office, MIA, for supplying meteorological data
References

1. The community summary report on trends & sources of zoonoses, zoonotic agents, antimicrobial resistance & foodborne outbreaks in the EU, 2006, EFSA

2. Schmid K et al. WHO surveillance programme for Control of FWD & intoxications in Europe 7th report 1993-1998

7. The community summary report on trends & sources of zoonoses, zoonotic agents, antimicrobial resistance & foodborne outbreaks in the EU, 2005, EFSA

9. Department of Health Promotion and Disease Prevention, IDCU, published & unpublished data

References

13. PJ Gregory et al. Climate change and food security; Philosophical transactions, the Royal Society, Biological Sciences. 2005; 360: 1463.
18. Kovats RS. Climate change, temperature & foodborne disease. Eurosurveillance weekly, 2003, 7 (49)