
A ONE HEALTH RESPONSE TO THE THREAT OF AMR
List of Contributors

Prof. Michael A. Borg (Working Group Chair)
Dr. Gunther P. Abela
Dr. Anthony Azzopardi
Dr. Roberto Andrea Balbo
Dr. Annalise Buttigieg
Dr. Paul Caruana
Dr. Susan Chircop
Prof. Maria Cordina
Dr. Beatrice Farrugia
Ms. Claire Farrugia
Ms. Antonia Formosa
Dr. Charmaine Gauci
Ms Dolores Gauci
Dr. Tanya Melillo
Dr. David Pace
Dr. Tonio Piscopo
Dr. Maya Podesta
Ms. Elizabeth Scicluna
Dr. Philip Sciortino
Dr. Peter Zarb

Editorial Team

Prof. Michael Borg
Dr Charmaine Gauci
Ms Dolores Gauci
Dr Maya Podesta
Foreword by the Deputy Prime Minister, Minister for Health

Since penicillin started to be used in the 1940s, antibiotics have saved countless lives and contributed to the control of infectious diseases that previously used to cause untold death and suffering. However, this medical miracle risks turning into one of the biggest public health threats of our time. Excessive and inappropriate use of antibiotics has resulted in the development of Antimicrobial Resistance (AMR) throughout the world. Infections are now no longer being cured or prevented by the same antibiotics which were so effective against them, just a decade or two ago. We face a real possibility of turning the clock back seventy years, when serious infections were untreatable. Just as worrying, medical advances like surgery and cancer treatment could be compromised since these require effective antibiotics to be successful.

Malta is not immune to this “Microbial Threat”. For this reason, I am pleased to launch this consultation document outlining major actions and priority areas being proposed for the prevention and containment of AMR in Malta in the coming years. This Strategy and Action Plan focuses on improvements in surveillance, proper use of antibiotics, infection prevention and control as well as education and research.

AMR is not only a challenge in human healthcare but equally impacts on animal health and the environment. This complex, inter-related, problem requires concerted efforts of various stakeholders from a multitude of sectors – including healthcare specialists, veterinarians, pharmacists, educationalists, policy makers, legislative bodies, agriculture, industry and the public. The Ministry for Health is therefore proud to have led this initiative through a ‘One Health’ collaboration with the Ministry for the Environment, Sustainable Development and Climate Change, with whom this Strategy was developed. AMR can and does have an impact on people and on our health services. Working towards its prevention and containment is necessary to allow the key medicinal advances to remain effective and to ensure that we can continue to rely on antibiotics in the coming decades.

Hon Chris Fearne
Deputy Prime Minister
Minister for Health
Foreword by the Parliamentary Secretary for Agriculture, Fisheries and Animal Rights

The Ministry for Environment, Sustainable Development and Climate Change is pleased to launch the Strategy and Action Plan for the Prevention and Containment of Antimicrobial resistance 2018-2015 jointly with the Ministry of Health and in line with the Food and Agriculture Organisation’s Action Plan on anti-microbial resistance 2016-2020. This is a holistic and cross governmental approach that will effectively address the threats posed by AMR in the longer term. Antimicrobials play a crucial role in the treatment of diseases of farm animals and plants and safeguard food security both in terms of quality and ensuring adequate supply. Consequently, farmers can access adequate returns to the initial investment made in the use of antimicrobials for the respective livestock and plant health.

It would be irresponsible for us to ignore the growing threat of antimicrobial resistance on animal and plant health, food security and the agricultural sector in general. Although we acknowledge the importance of the use of antimicrobials in the farming sector, we should ensure that these are not abused and consequently we are proposing measures that prevent the excessive use of antimicrobials that lead to the proliferation of antimicrobial resistance in the farming sector.

In fact, there are long term negative implications on the agricultural sector particularly livestock livelihood and accessibility of nutrient food in adequate quantities. Should we fail to read the sign of times, farmers may end up with fewer healthy livestock that will reduce overall agricultural production. This will create a domino negative effect in terms of rising prices of agricultural goods at market level due to limited supply. Consequently, with this Strategy we are mitigating the volatility and unpredictability of agricultural food prices at international level. It is for these reasons that MESDC is committed to implement the measures suggested in this comprehensive strategy and action plan for 2025. Although there are arguments in favour of the continued and uncontrolled use of antimicrobials, we chose to subscribe to more sustainable and longer-term measures that benefit the sustainability of the agricultural and food security sectors. In fact, the use of antimicrobials need not be large scale as long as there are adequate hygiene standards in the farm. Through improved hygiene, farmers can seek cost effective solutions to prevent any major risks to overall animal and plant health whilst ensuring a more prudent use of antimicrobials in the respective agricultural production practices. Through this transition, our farmers can create the right environment for reducing livestock mortality figures by ending overuse of antimicrobials.

As a result, our strategy amongst other measures, is aimed at encouraging farmers to make use of the planned educational campaigns on the risks of non-prescribed use of antibiotics from unlicensed suppliers as well as the incalculable benefits and cost effectiveness of greater hygiene standards. The Government remains unabated in its commitment to promote the use of antimicrobials for treatment purposes and the adequate supply of live saving drugs in the livestock and plant sector.

Hon Clint Camilleri
Parliamentary Secretary for Agriculture, Fisheries and Animal Rights
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR</td>
<td>Antimicrobial Resistance</td>
</tr>
<tr>
<td>ARMed</td>
<td>Antibiotic Resistance Surveillance & Control in the Mediterranean Region project</td>
</tr>
<tr>
<td>ATC</td>
<td>Anatomical Therapeutic Chemical</td>
</tr>
<tr>
<td>BURDEN</td>
<td>Burden of Resistance and Disease in European Nations project</td>
</tr>
<tr>
<td>CPD</td>
<td>Continuous Professional Development</td>
</tr>
<tr>
<td>CRE</td>
<td>Carbapenem resistant Enterobacteriaceae</td>
</tr>
<tr>
<td>EARS-Net</td>
<td>European Antimicrobial Resistance Surveillance Network</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control</td>
</tr>
<tr>
<td>EEA</td>
<td>European Economic Area</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>ESAC</td>
<td>European Surveillance of Antimicrobial Consumption</td>
</tr>
<tr>
<td>ESAC-Net</td>
<td>European Surveillance of Antimicrobial Consumption Network</td>
</tr>
<tr>
<td>ESVAC</td>
<td>European Surveillance of Veterinary Antimicrobial Consumption</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>HAI</td>
<td>Healthcare Associated Infections</td>
</tr>
<tr>
<td>ICD</td>
<td>Infection Prevention & Control Department - Mater Dei Hospital</td>
</tr>
<tr>
<td>ICM</td>
<td>Inter-sectorial coordinating mechanism</td>
</tr>
<tr>
<td>IMPLEMENT</td>
<td>Implementing Strategic Bundles for Infection Prevention & Management project</td>
</tr>
<tr>
<td>IPC</td>
<td>Infection Prevention and Control</td>
</tr>
<tr>
<td>MDH</td>
<td>Mater Dei Hospital</td>
</tr>
<tr>
<td>MDRO</td>
<td>Multi-drug-resistant organisms</td>
</tr>
<tr>
<td>MRSAs</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>NAC</td>
<td>National Antibiotic Committee</td>
</tr>
<tr>
<td>OIE</td>
<td>World Animal Health Organisation</td>
</tr>
<tr>
<td>PPS</td>
<td>Point Prevalence Survey</td>
</tr>
<tr>
<td>TESSy</td>
<td>European Surveillance System</td>
</tr>
<tr>
<td>VPRD</td>
<td>Veterinary and Phytosanitary Regulation Division</td>
</tr>
<tr>
<td>WHA</td>
<td>World Health Authority</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
Glossary

Antibiotic resistance
Refers to a property of bacteria that confers the capacity to grow in the presence of antibiotic levels that would normally suppress growth or kill susceptible bacteria.

Antimicrobial
Refers to medicine that, on application to living tissue or by systemic administration, will selectively kill or prevent or inhibit growth of susceptible organisms.

AMR
Refers to the ability of microorganisms, including bacteria, viruses, fungi and parasites to resist the action of antimicrobials especially of antibiotics that would normally suppress growth or kill susceptible organisms.

Animals
Refers to both food producing and non-food producing, including pets, pigeons and farmed fish.

AWaRE list of antibiotics
Refers to the Essential Medicines List issued by WHO for adults and children; this includes:
- ACCESS antibiotics which are first- and second-choice options for common infections and should be available in all countries and all facilities
- WATCH antibiotics that should be prescribed only for specific indications, since they are at higher risk of bacterial resistance.
- RESERVE antibiotics including last-resort options.

‘Critical’ antibiotics (human use)
Refers to those antibiotics used to treat serious or life-threatening infections in humans for which there are very limited or no alternative antibiotics that can be used to treat the infections if antibiotic resistance develops. The antibiotics that are in this critical class change from time to time and are influenced by the availability of newer antibiotics and the resistance rate of bacteria causing serious human infections.

Community/primary care
Refers to healthcare provided in the community for people making an initial approach to a medical practitioner or clinic for advice or treatment.

Food producing animals
Refers to land animals as well as fish that are reared for eating.

Hospital care
Refers to healthcare provided in a public or private licensed institution providing medical and surgical treatment and nursing care for sick or injured people.
Table of Contents

Executive summary 7

1. Introduction 8
 1.1. The problem of AMR 9
 1.2. The burden of AMR and its significance to Public Health 9

2. Background 10
 2.1 Global and European initiatives to counteract AMR 10

3. Current situation of AMR in Human Health in Malta 11
 3.1 AMR Epidemiology 11
 3.2 Antimicrobial Consumption 11
 3.3 Healthcare Associated Infections 12

4. Current situation of AMR in Animal Health in Malta 12
 4.1 AMR Epidemiology 12
 4.2 Antimicrobial Consumption 12

5. Existing activities to address AMR in Malta 13
 5.1 Legislation regulating Human Health and Animal Sectors 13
 5.2 Interventions to address AMR in Human Health 15
 5.3 Interventions to address AMR in Animal Health 17

6. Relevant stakeholders 19

7. Framework for Action 20
 7.1 Vision 20
 7.2 Guiding Principle 20
 7.3 Aim 20
 7.4 Overall Objectives 20
 7.5 Strategic Priority Areas for Action 21
 Objective 1: Legislation and infrastructure 21
 Objective 2: Stewardship 22
 Objective 3: Surveillance 23
 Objective 4: Infection Prevention and Control 24
 Objective 5: Training, Continuous Professional Development and Education 25
 Objective 6: Research and Performance Measurement 26
 Objective 7: International partnerships and collaboration 26

8. Way Forward 27

Bibliography 28

Appendix 1: Local AMR epidemiology 30
Appendix 2: Current strengths and deficits in addressing AMR in Malta 39
Appendix 3: Action Plan 42
Executive summary

Antibiotics are essential to medical practice because they are used to treat or prevent infectious diseases that might otherwise be lethal. Without antibiotics, lifesaving interventions such as intensive care, cancer treatment and many serious surgical procedures would not be possible because the risk of infection would be too high.

Antimicrobial Resistance (AMR) occurs when an antibiotic is no longer effective on bacteria it previously used to destroy. In common with many Mediterranean countries, the prevalence of AMR in Malta is significantly higher than several other regions within the European Union (EU), especially Scandinavia. These local challenges manifest themselves in both Human Health – in hospital and community settings, as well as in veterinary practice. The greatest challenge resides in the increasing levels of Carbapenem Resistant Enterobacteriaceae (CRE) which can be resistant to all known antibiotics and therefore untreatable; they threaten to turn the clock to the days before Fleming discovered penicillin.

The AMR Strategy is therefore a cross-sectoral response to the threat of AMR in Malta with the aim of controlling and possibly reversing these current AMR trends. It has been informed by a review of national and international literature as well as expert advice from key stakeholders, especially the European Centre for Disease Prevention and Control (ECDC). The Strategy aligns with the World Health Organisation (WHO) Global Action Plan on Antimicrobial Resistance, the EU Action Plan on Antimicrobial Resistance as well as National legislation. It recognises the interconnectedness of humans, animals and the environment and adopts a whole of Government, a whole of society and a comprehensive One Health Approach to AMR, recognizing the complexity of the issue.

The main objectives of the AMR Strategy are to:

1. Strengthen the infrastructure needed to address the AMR situation through adequate support of the inter-sectoral coordinating mechanism (ICM), appropriate legislation and strengthening of relevant surveillance and feedback systems in Human and Animal Health as well as the environment.
2. Foster improved awareness and education on AMR among healthcare professionals, veterinary professionals and the public, as well as the measures needed to prevent it.
3. Introduce overarching measures to ensure appropriate antibiotic prescribing and use in community, hospitals and veterinary practice and in both Human and Animal Health sectors.
4. Improve Infection Prevention and Control (IPC) through national coordination and oversight, implementation of effective IPC multi-modal strategies in all healthcare facilities (with the control of CRE designated as a national priority) and foster hygiene standards in farms to prevent cross-transmission of animal pathogens.
5. Encourage and support innovation, research and networking in areas relevant to AMR.
1. **INTRODUCTION**

Antimicrobial resistance (AMR) refers to the ability of microorganisms to resist the action of antimicrobials, occurring when such microorganisms (e.g. bacteria, fungi, viruses and parasites affecting humans, land-dwelling and aquatic animals and plants) become resistant to antimicrobials such as antibiotics, making infections or diseases caused by such microorganisms more difficult or impossible to treat. Antimicrobials play a critical role for ensuring health and productivity when judicially used. However, when imprudently used they can lead to the associated emergence and spread of antimicrobial resistant microorganisms, placing everyone at great risk.

While bacterial resistance to antibiotics has developed rapidly and has become a major threat, a slowly emerging phenomenon of resistance of other micro-organisms to antimicrobials such as antifungals, antivirals and anti-parasitic agents have also been observed. Since bacterial AMR to antibiotics constitutes the largest significant threat of AMR, the Strategy focuses on antibiotic resistance and does not encompass other antimicrobial resistance, which has so far been on the low side.

The challenge of AMR is complex and no single action will, in isolation, provide an effective response. For this reason, the Strategy is a cross-sectoral response to the threat of AMR in Malta. Its focus lies in controlling and possibly reversing current AMR trends. The Strategy sets out objectives that identify the broad areas where integrated and simultaneous action is required. Progress in each area is important to ensure a comprehensive response and support progress towards the Strategy’s vision.

The goal, objectives and actions needed to achieve them have been informed by a review of national and international literature as well as expert advice from key stakeholders. The Strategy aligns with the WHO Global Action Plan on Antimicrobial Resistance, the EU Action on Antimicrobial Resistance as well as National Legislation.

With the aim of maintaining efficacy of antibiotics for both humans and animals for the long term and to improve Human and Animal Health, the Strategy sets priorities for future actions, whilst highlighting good practice initiatives which are already being implemented to address AMR. Some actions are concerned with adapting and extending existing successful initiatives whilst others focus on identified gaps that require new areas of action.

The Strategy recognises the interconnectedness of humans, animals and the environment. In view of the complexity of the issue, it adopts a whole of Government, a whole of society and a comprehensive One Health Approach to AMR. The Strategy, therefore, underscores the need for co-ordinated action by many stakeholders in Malta who are responsible for the different actions within the Strategy including Government, private and public partners and the public across the human, animal and environment sectors. Whilst individual actions are important, many are interrelated and specific actions in one area contribute to the achievement of multiple objectives.
1.1. The problem of AMR

AMR occurs due to changes in bacterial genetic material which can arise either due to mutations or through the acquisition of resistance genes from other bacteria. Various resistance genes can be exchanged or acquired between different species of bacteria and can lead to the development of multi-drug-resistant organisms (MDRO). As a result of antibiotics killing off sensitive bacteria, resistant bacteria are allowed to proliferate further and therefore become predominant.

Since their discovery in the early 20th Century antibiotics have revolutionised medicine. Antibiotics are essential to medical practice because they can be used to treat infectious diseases that might otherwise be lethal. Infections, which had previously killed millions, suddenly became treatable. The prompt administration of antibiotics in the treatment of certain conditions has also been proven to reduce morbidity and mortality. Without antibiotics, lifesaving interventions such as intensive care, cancer treatment and many serious surgical procedures would not be possible because the risk of infection would be too high.

However, as we move towards a century of antibiotic use, the availability of antibiotics that are effective is significantly threatened by the development and spread of AMR, making the prevention and treatment of infectious diseases more difficult and challenging.

1.2. The burden of AMR and its significance to Public Health

The emergence and spread of microbes resistant to the most effective antimicrobial agents, places medical advances in jeopardy. The resultant higher patient morbidity and mortality, together with increasing healthcare costs, are becoming major challenges worldwide. This is especially important to consider in the context of an ageing population which is generating a greater demand for healthcare services including antibiotic use.

Whilst the health, social and economic burden due to AMR is significant, it is difficult to quantify precisely because of deficiencies in the available data for many countries. It is even more difficult to estimate the additional human burden associated with AMR such as pain and psychosocial costs. Inappropriate use of antibiotics leads to wastage and higher medication costs; second and third line antibiotics often need to be used, coupled with additional investigations, consultation time and nursing care as well as the additional burden on hospitals. In addition, patients, their family and society endure loss in income, reduced worker productivity and added family support which all contribute to the social and economic burden generated by infections due to resistant microbes. Furthermore, the social and economic burden is exacerbated by associated mortality.
The estimated global yearly economic burden due to infections resulting from extra healthcare costs and productivity losses due to MDROs exceeds 1.5 billion euros per year. While the impact of AMR in Malta has not yet been properly quantified, a single Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia can result in additional costs of care in excess of €10,000.

2. BACKGROUND

2.1 Global and European initiatives to counteract AMR

Recent G7, G20 fora and United Nations statements on this subject show that the scale of the problem requires a concerted global governance effort. The increase in AMR experienced in recent decades has seen it designated as a Public Health priority by all major stakeholders. The WHO, in its Global Action Plan on Antimicrobial Resistance (2015), which was subsequently adopted by the World Animal Health Organisation (OIE) and the Food and Agriculture Organisation, the United Nations Political Declaration on AMR (2016) and the European Union One Health Action Plan against Antimicrobial Resistance (2011) as amended in 2016 through “A European One Health Action Plan against Antimicrobial Resistance (AMR)” highlight the efforts necessary to address this global treat. They have consequently, published roadmaps aiming to control AMR. These Strategies emphasise the importance of national, regional, and international collaboration for the control and spread of resistance. Through WHA 67.25 and 68.7 the WHO calls upon all member states to have in place by 2017 national action plans on AMR.

Between 2001 and 2010, European countries collected resistance data through the European Antimicrobial Resistance Surveillance System (EARSS). As of 2011, EARSS, whose new acronym is EARS-Net, has become fully integrated in the ECDC database (TESSy). The EU additionally established the European Surveillance of Antimicrobial Consumption (ESAC) to monitor the consumption of antibiotics in both the inpatient and outpatient sectors.

Northern European countries tend to report a lower resistance prevalence compared to countries in the south and east of Europe. These geographical differences in AMR could be explained by differences in IPC practices and antibiotic consumption. For instance, the antibiotic consumption rate in the community tends to be low in Scandinavian countries whereas Southern European countries have high levels of antibiotic use. Compared to other European countries, broad-spectrum antibiotics are also prescribed more frequently in Mediterranean countries, in both community and hospital settings.

3. **Current Situation of AMR in Human Health in Malta**

3.1 **AMR Epidemiology**

Malta is not immune to the significant challenge of AMR. Indeed, in common with most Mediterranean countries, several drug-bug resistance combinations are locally prevalent in significantly greater proportions than other EU regions, especially northern countries, which tend to report lower resistance. These local challenges manifest themselves in Human Health – at hospital and community settings – as well as in the animal sector. More details on the status of AMR in key pathogens, relevant to human and Animal Health, can be found in Appendix I.

3.2 **Antimicrobial Consumption**

Several local datasets have provided indicative trends and levels of use of antimicrobial agents both in the community as well as in the hospital setting. The data suggests that major challenges are present in the community, possibly due to a culture of over-prescribing antibiotics as well as to doctors acceding to patient demands. Whilst non-prescribed use of antibiotics has reduced drastically in the past decade (from over 18% in 2002 to around 1% of total usage as reported by the 2016 Eurobarometer survey), the same cannot be said for inappropriate prescribing. Almost half of the Maltese participants in the same survey reported being prescribed at least one course of antibiotics during 2015. Most respondents reported that it was prescribed for a cold, influenza or sore throat - conditions for which antibiotics are not normally indicated. The Eurobarometer results have been confirmed by other local post-graduate dissertations. Most antibiotics prescribed in the community are highly broad spectrum in nature; with co-amoxiclav, cefuroxime and ciprofloxacin being the three most commonly prescribed. These are well known to be greater drivers of resistance than the narrower spectrum equivalents.

Trends of consumption of antibiotics within Mater Dei Hospital (MDH), (the main hospital in the country), have stabilised in recent years, especially in high consuming units such as Intensive Care, Nephrology and Haematology, where antibiotic stewardship programmes have been introduced with some success. Nevertheless, use per capita is well above the European average. Additionally, the over-use of broad spectrum products (especially carbapenems) remains a challenge together with excessively prolonged and unnecessary use of antibiotics for surgical prophylaxis.
3.3 Healthcare Associated Infections

Data about the prevalence of healthcare associated infections (HAI) is available only for MDH. Results from the 2011-2012 European Point Prevalence Survey (PPS), undertaken by ECDC, placed the prevalence of HAI in Maltese hospitals at the lower half of the European median; the actual prevalence was lower than what could be predicted from patient characteristics and case mix. In addition, significant improvement has been registered in the incidence of bloodstream infections in intensive care as well as several types of surgical site infections, especially those related to prosthetic hip and knee replacement surgery.

4. Current Situation of AMR in Animal Health in Malta

4.1 AMR Epidemiology

Information on AMR in isolates of animal origin remains extremely sparse and restricted to a very limited set of isolates tested annually at the National Veterinary Laboratory, in compliance with EU minimal requirements. Yet, even from this limited information, it appears that AMR in animals is a significant problem. Almost half of Salmonella poultry isolates, tested in 2014, were resistant to ciprofloxacin – a crucial antibiotic in human medicine. At the same time, 86% of E. coli strains from the same source were also resistant to the same antibiotic.

Malta is not currently carrying out the testing required under Commission Implementing Decision 2015/495/EU 6, which established a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. No other activities are underway which could monitor and address environmental aspects of AMR such as in wastewater treatment, ground water and dust.

4.2 Antimicrobial Consumption

Detailed information on antibiotic use in animals in Malta is also significantly limited and Malta is the only EU/EEA state that to date has never provided any data to the European Medicines Authority’s European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) network. Efforts to obtain an overview of the sales of veterinary antimicrobials have been made by the Veterinary and Phytosanitary Regulation Division (VPRD). Wholesalers have been requested to submit a summary of their annual sales by weight per officially set criteria. Most wholesalers have attempted to provide the data requested, however, these were often incomplete or of variable quality. Anecdotal feedback suggests that the conditions for which antimicrobials are mostly used in the different species are: in cattle for mastitis, swine for respiratory disease, horses, dogs and cats for skin disease. Many older antibiotics e.g. penicillin, tetracyclines, are cited as the most frequently prescribed antibiotic classes to treat the main food producing animals.
Critically Important Antibiotics for human medicine are said to be used to treat urinary disease in cats, respiratory disease in cattle, diarrhoea in cattle and swine, locomotion disorders in cattle, post-partum dysgalactia syndrome in swine and dental disease in dogs. There is also evidence of metaphylactic use of penicillin in the rearing of broilers.

Although Regulation 60 of Subsidiary Legislation 437.47 requires all antimicrobial Veterinary Medicinal Products to be obtained following a veterinarian’s prescription, it is known that these pharmaceuticals are also sourced from a range of sources including from other farmers, visiting veterinarians, from other Member States and direct personal imports. The quantities of antimicrobials sourced in such ways is not known. These issues also present challenges for the implementation of policies for the prudent use of antimicrobials.

4.2.1 Aquatic farming

The aquatic sector benefits from the prudent use of antimicrobials in terms of improving on-farm biosecurity and husbandry (e.g. use of vaccines and disinfectants), treating chronic diseases (that cause reduced growth, low food conversion rate and poor survival thus leading to reduced production) and epizootic diseases that can cause mass mortalities. There are local concerns regarding threats posed by abuse, overuse, misuse; environmental and ecological issues; antimicrobial residues and AMR.

5. Existing Activities to Address AMR in Malta

5.1 Legislation regulating Human Health and Animal Sector

Legislation directly related to AMR is limited. Current legislation requires that all antibiotics used for human patients (including topical formulations) as well as food animals, should be Prescription Only Medicines.

Legal Notice 122 of 2008 established the National Antibiotic Committee (NAC), a committee that serves as the Intersectoral Coordinating Mechanism for Malta. The NAC has representation from various professional groups involved in the prescribing and dispensing of antibiotics although it does not include participation of non-prescribers or the public. Most of its past activities have focused on Human Health; Animal Health interventions have been minimal. The main role of the NAC has been primarily educational, both in terms of guideline development as well as educational campaigns aimed at both healthcare professionals as well as the public. It is legally empowered to collect wholesaler antibiotic sales data. The NAC is limited in its output due to lack of adequate resources both financial and human.
Ad hoc funds have been provided over the years, especially in activities related to European Antibiotic Awareness Day; this has allowed a basic level of activity to be maintained on a yearly basis. Other than to undertake collection and analysis of data related to ambulatory-care antibiotic consumption, no administrative support is available to the NAC.

Legislation in relation to Animal Health is in place as per EU/EC regulations, directives, actions and decisions. EU guidelines have been adopted and adapted as needed. Although the important directives have been transposed into Maltese Law there is still a need for more control and enforcement in relation to antimicrobials. Legislation at national level is crucial in this respect and the drafts for this have been prepared and the normal legislative process is in progress.

The Regulation on transmissible animal diseases ("Animal Health Law") of March 2016 sets out a legal basis for monitoring animal pathogens resistant to antibiotics. These supplement the regulations on veterinary medicines and on medicated feed.

The Veterinary Services Act, 2002 as amended in 2016 obliges distributors to provide the VPRD with all data relating to volume of sales of veterinary medicinal products which includes antibiotics sales and prescriptions. Compliance is generally satisfactory for data that is currently requested.

Challenges in human and financial resources at the VPRD together with ever increasing complexity of regulatory controls constitute a major challenge to achieve effective implementation.

Major legislative lacunas include: the lack of legislative provisions directly relevant to AMR prevention, the absence of a legal notice covering patient safety, which would also include infection prevention and control, and regulation in relation to antibiotic formulations that are not intended for humans, when used for non-food animals (especially pets) and regulations that specifically obliges distributors to provide, at regular intervals, the data on antibiotics consumption.
5.2 Interventions to address AMR in Human Health

5.2.1 AMR surveillance

The surveillance of AMR at MDH is already well established and on par (if not above average) to that performed in most EU hospitals. This relates both to day to day surveillance and outbreak detection as well as monitoring of trends. Regular feedback of data is communicated to decision makers as well as healthcare workers. Other public hospitals are also notified in real time of AMR isolates of concern. Epidemiology of AMR in these hospitals can be extracted from the central MDH lab database, however, the frequency of specimen taking is significantly lower than in MDH and therefore accurate epidemiological conclusions are more difficult to achieve.

Information about AMR in the community is less robust. While data about community samples sent for culture and sensitivity at the Microbiology laboratory at MDH is available, these tend to originate from patients failing first line treatment in the community and are therefore skewed towards higher resistance profiles. There is currently no requirement for private laboratories and/or hospitals to report AMR to the National Antibiotic Committee.

5.2.2 Surveillance of Antimicrobial Consumption

Surveillance of antibiotic use has also been long established at MDH, where historical trends of consumption are available by Anatomical Therapeutic Chemical (ATC) Classification System, against bed day denominators. In addition, audits of restricted antibiotics – especially carbapenems – have been undertaken using hospital guidelines as the gold comparative standard. Indicators of over-use and misuse have been established. Knowledge about antibiotic use patterns in other hospitals is not generally available.

Community consumption is more problematic. In the absence of a national reimbursement system or electronic prescribing infrastructure, obtaining data at prescriber/pharmacy level has proven close to impossible. As a compromise, wholesaler distribution statistics are collected on a yearly basis and used as a proxy.

Both hospital and community data sets are submitted on a yearly basis to the ESAC-Net network coordinated by ECDC. However, since the method of data collection of ambulatory care consumption differs from that of most EU countries participating in this network (who have access to reimbursement data), benchmarking can only be done on an approximate basis. More accurate are the results of the Eurobarometer surveys on antibiotic use where a standard methodology is utilised across all countries.
5.2.3 Infection Prevention and Control (IPC)

The Infection Control Department (ICD) at MDH coordinates all activities related to the prevention and control of HAI in the hospital. It also provides technical assistance, when requested by other public hospitals, each of which now have an appointed Practice Nurse in IPC. The ICD has developed a comprehensive set of policies and Standard Operating Procedures that are also used by the other public hospitals, is active in IPC education and organises an annual national conference. The unit also adopts a Plan-Do-Study-Act approach utilising Root Cause Analysis tools to identify and address causative factors for serious infections, such as MRSA bacteraemia. In addition, a strong emphasis is placed on process audits including hand hygiene facilities and performance, management of central lines, peripheral venous cannula care, compliance with contact precautions, and environmental cleaning amongst others. A formal IPC setup in other hospitals and clinics is not required nor regulated.

5.2.4 Education

Education on AMR of healthcare professionals at undergraduate levels is somewhat heterogeneous. In the MD course run by the University of Malta, there has been a significant increase in IPC related lectures and tutorials (medical students receive more than 15 hours on IPC) but at the same time there has been a reduction in contact time on antimicrobial agent pharmacology. Undergraduate teaching in Pharmacy also dedicates a considerable (proportionally greater) quantity of lectures to infection prevention (including vaccination) and, as expected, pharmacology of antimicrobial agents. Historically undergraduate education in nursing has always had a strong component of IPC; however in recent years, coverage has reduced; topics have been interspersed in various modules and not always taught by specialists in the field. Unfortunately, the situation is even worse in the allied health sciences, where undergraduate instruction in AMR and IPC is sparse, at best.

Post graduate education in AMR and antibiotic prescribing is generally unstructured other than in the Specialist Training Programme for family doctors, where at least one session is dedicated to antibiotic prescribing. There are no AMR related CPD requirements for any healthcare profession and, not surprisingly, activities are often sub-optimal. Family doctors are the professional group most exposed to CPD activities related to infectious disease management and antibiotic prescribing. Unfortunately, although normally organised under the umbrella of a professional society, these activities are invariably sponsored by industry and often include a promotional introduction by the sponsor.

Education of the public has so far been primarily in relation to the European Antibiotic Awareness Day. The lack of a dedicated budget and resources causes planning challenges. Dissemination of information has relied on billboards as well as media opportunities through radio and TV talk-shows. Despite their restricted nature, these activities have had an impact that appears to outweigh the level of investment. Nevertheless, there are still major challenges in public education and awareness. According to the 2015 Eurobarometer survey only 27% of Maltese were aware that antibiotics do not kill viruses, and 39% knew of their ineffectiveness against colds and flu. Education on AMR, appropriate use of antibiotics and infection prevention in schools is almost completely lacking.
5.2.5 Research

Over the past decade, the MDH-ICD has participated in various EU funded research programmes including ARMed (as project coordinator), BURDEN and IMPLEMENT. The paucity of funding opportunities means that local research initiatives are largely restricted to ad-hoc studies undertaken as part of undergraduate and postgraduate dissertations, especially B.Sc. Medical Laboratory Science and M.Sc. Biomedical studies (Microbiology). Although limited in scope, the data generated by these studies have, however, provided invaluable information on local AMR epidemiology.

5.3 Interventions to address AMR in Animal Health

5.3.1 AMR surveillance

AMR surveillance in animals is currently very restricted and carried out by the National Veterinary Laboratory only on resistance of Salmonella species in poultry (layers and broilers) and swine as well as for E. coli under Decision 2013/652.

There are currently no laboratories in Malta that can provide a suitable service for performing routine diagnostic and susceptibility tests. Consequently, samples must be sent to other countries for analysis but this is rarely done due to the costs involved, logistical issues (e.g. ensuring suitable conditions for sample transport) and time taken to receive the result. As a result, obtaining a realistic picture of AMR has proven challenging.

5.3.2 Surveillance of Antimicrobial Consumption

Each year all registered local distributors supply the VPRD with information on the sales of antibiotics for that year. The data are received from all distributors of veterinary medicinal products and distributors of medicated feed.

Every six months the single licensed medicated feeding mill in Malta supplies VPRD with information on the sales of medicated premix for each medicated feedstuff manufactured. This is used as a proxy for consumption.

The data received have been of variable quality. As of 2017 the process for data collection, reporting and evaluation has been reviewed and data analysis intensified. Data are expected to be realistic and reliable.

Since 2016, Malta started giving sales data on antimicrobials to the OIE. As of 2018 Malta will provide data on the sales of antimicrobials to the ESVAC project.

The situation is complicated by possible use of antimicrobials intended for human medicine, but which are used in animals under the cascade (provided for by Articles 10 and 11 of...
Directive 2001/82/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to veterinary medicinal products) which allows for off label use. This can be tackled by eventually measuring antimicrobial use at farm level using several additional tools, for example through electronic prescription.

5.3.3 Education

Previous local experience with educational initiatives targeting veterinarians and farmers did not yield the expected results in terms of compliance with the regulatory requirements, other than some improvement in the dairy sector. It is not clear whether the improvement in the dairy sector was due to the success of these educational initiatives or the “cross-compliance programme”. This programme links direct payments through the Common Agricultural Policy to compliance by farmers with basic standards concerning the environment, food safety, animal and plant health and animal welfare.

The website of the VPRD includes a risk-based scoring tool that evaluates the quality of biosecurity of a herd. The tool can help with the reduction of antimicrobial usage and to improve the general land-dwelling Animal Health situation. Farmers can make use of this tool to assess the biosecurity level in their farms. The website also includes a comprehensive formulary of Veterinary Medicinal Products to be used for specific diseases in companion animals (including racing pigeons) listing the first and subsequent line of treatment. The suggested treatments only include the currently authorised veterinary medicinal products in Malta. An explanation of scientific factors related to the possible spread of AMR in humans from companion animals and the proven efficacious treatment for specific diseases is also included.

As present there is no undergraduate university course for veterinarians in Malta. A leading vocational education and training institution provides a course leading to BSc in Animal Management and Veterinary Nursing. Efforts will be made to include or increase emphasis on subjects related with AMR in this course. Furthermore, there is a proposal to include veterinary medicinal products (with an emphasis on AMR) in the undergraduate programme leading to a degree in pharmacy to bridge some of the gap between education and industry thus enhancing interest in the subject.

Circulars have been issued as guidance on prudent use of critically important antimicrobials by VPRD. These guidelines are addressed to pharmacists, wholesale dealers, qualified persons and veterinarians and are publicly available on the VRD website.

The Veterinary Surgeon Council has issued a series of documents as a guide for Professional Conduct, which draws attention to the legal and ethical obligations related to the prudent use of veterinary medicinal products. It is obligatory to adhere to this guidance and sanctions may be taken against veterinarians who do not follow it. In addition, the Malta Veterinary Association, a non-profit body, issues information to its members on the prudent use of antimicrobials as part of its activities to promote professional knowledge, science and practice.
6. **RELEVANT STAKEHOLDERS**

The control and prevention of the development and spread of AMR depends on various professionals and entities, in both public and private sectors, spanning the human and Animal Health sectors as well as the agricultural, aquaculture and environmental sectors. In addition, Government commitment is also paramount for the success of this AMR Strategy.

Key stakeholders in the implementation of this Strategy include:

- Ministries responsible for Human Health, Animal Health and Education
- National Antibiotic Committee
- Professionals involved in antibiotic prescribing and dispensing for humans and animals
- Healthcare workers providing patient care
- Farmers, animal owners and stakeholders involved in animal sectors and aquaculture
- Hospital-based entities (public and private)
- Community practitioners
- Long-term care facilities
- Schools and child-care facilities
- Universities and educational institutions responsible for training of professionals
- Public Health authorities
- Medicines Authority
- Professional Organisations
- Public
- Pharmaceutical Industry and wholesalers
- Pharmacies
- Schools and child-care facilities
7. FRAMEWORK FOR ACTION

7.1 Vision

The vision is to create a society in which antimicrobials are available, recognised and managed as a valuable shared resource, maintaining their efficacy through appropriate use so that infections in humans and animals remain treatable, lives are not threatened, and communities continue to benefit from the advances that antimicrobials enable.

7.2 Guiding Principle

The guiding principle leading the Strategy is that of One Health. This principle recognises the inextricable link between humans, animals and the environment and emphasis that achieving optimal health outcomes for people and animals requires the collaboration and cooperation of Human Health, Animal Health and the environment. Interdisciplinary collaboration which needs to be facilitated at various levels including national, through a whole of government approach, and international is critical between the numerous stakeholders.

7.3 Aim

The aim of this Strategy is to provide a plan of action for Malta, designed to ensure the efficacy of antibiotics for the long term. This focuses on the appropriate use of antibiotics and minimising the development and spread of AMR, thereby improving Human and Animal Health.

7.4 Overall Objectives

- Review current relevant legislation to strengthen governance to prevent and counteract AMR and address the gaps in legislation and regulation to ensure leadership, engagement and accountability for actions to combat antimicrobial resistance.
- Implement effective One Health antimicrobial stewardship practices across human and Animal Health settings to ensure the appropriate and prudent prescribing, dispensing and administering of antimicrobials.
- Develop nationally coordinated One Health surveillance of AMR and antimicrobial usage.
- Improve infection prevention and control measures across Human Health and Animal Health settings to help prevent infections and the spread of AMR.
- Increase awareness and understanding of the use of antibiotics to treat and prevent infections through education and training.
- Agree a national research agenda and promote investment to prevent, detect and contain antimicrobial resistance.
- Strengthen international partnerships and collaboration on regional and global efforts to respond to AMR.
7.5 Strategic Priority Areas for Action

The Strategy provides a framework to guide actions on AMR and use of antibiotics. It will coordinate activities across stakeholder groups where all stakeholders must work under the Strategy to change those practices that are contributing to the inappropriate use of antibiotics and the increasing development of resistance in Malta. The Strategy aims to build on the current strengths and address areas where deficits have been identified for each objective (Appendix 2). In order to achieve full implementation of the Strategy, a number of pre-requisites (such as electronic prescribing, a Veterinary Medicinal Products Authority) are required.

Implementation and evaluation of the Strategy will be supported by an Implementation Plan that provides the detail of specific actions, targets, timeframes and indicators (Appendix 3). The Plan will be developed during 2018-2019 in consultation with stakeholders. Implementation will take a staged approach over the period 2018–2025.

The Objectives and their Priority Action areas are outlined below.

Objective 1: Legislation and infrastructure

Ensure the necessary legislation and infrastructure to address AMR and implement effective strategies

The following actions are required to ensure a more robust legislative framework:

1.1 Review and update legislation relevant to antimicrobial usage and antimicrobial resistance and its enforcement.

1.2 Develop a regulatory framework for a One Health Approach in implementing this Strategy.

1.3 Strengthen enforcement and monitoring of compliance with relevant legislation.

1.4 Review the role of the NAC by regulating for more robust responsibilities, accompanied by appropriate funding and resources for its effective functioning.

1.5 Introduce appropriate legislation to establish minimum standards for infection prevention and control in Human Healthcare and residential care institutions.

1.6 Strengthen legislation on antibiotic use in Animal Health to ensure full effective implementation of EU Directive 2001/82/EC.

1.7 Review and/or establish legislation to prevent discharge of antibiotics into the environment through adequate wastewater treatment systems.
Objective 2: Stewardship

Implement effective antimicrobial stewardship practices across Human Health and Animal Health settings to ensure the appropriate and prudent prescribing, dispensing, administering and disposal of antimicrobials.

The following actions are required for effective antimicrobial stewardship:

2.1 Introduce overarching measures to improve antibiotic prescribing and use on a national level by supporting decision-making on the part of prescribers through updated and evidence-based national antibiotic guidelines, in both human (community, hospital settings as well as long term care facilities) and Animal Health (both treatment and metaphylaxis).

2.1.1 Ensure that all antibiotics recommended in the national guidelines - especially narrow-spectrum formulations – are stocked by, and can be easily obtained from, all pharmacies (both public and private).

2.2 Ensure that antibiotics listed within the WATCH and RESERVE groups of the AWaRE list of antibiotics, issued by WHO, are targeted by stewardship programmes, at national and institutional levels.

2.3 Set and monitor qualitative and quantitative targets for improvement of prescribing at national level and introduce systems to identify, benchmark and follow up high-end prescribers in community, hospital and veterinary settings.

2.4 Introduce specific measures to improve antibiotic prescribing and use in the community, hospitals and veterinary practice including delayed prescribing, academic detailing and rapid, point-of-care diagnostics.

2.4.1 Review rules to promote splitting antimicrobial packs in a legal and safe manner, to reduce the risk of antibiotic left-overs at home.

2.5 Establish programmes of clinical audits on antibiotic prescribing among doctors and veterinarians with commensurate incentives for participation.

2.6 Ensure that any electronic prescribing systems include antimicrobial prescribing and link to clinical indication, microbiological and consumption data.

2.7 Fast track the procurement of new antibiotics, effective against currently resistant organisms, and ensure their judicious use by gatekeeping through infectious disease specialists and microbiologists.

2.8 Review existing accreditation and quality assurance programmes of microbiology laboratories to ensure they appropriately support and encourage compliance with best practice AMR approaches.

2.9 Develop a system for safe disposal of antibiotics in the community.
Objective 3: Surveillance

Strengthen relevant surveillance and feedback systems on antibiotic use and resistance in human and Animal Health as well as the environment.

Coordinated surveillance is essential to understand the magnitude, distribution and impact of resistant organisms and antimicrobial usage, identify emerging resistance and trends, and determine associations between usage and resistance. Such data will inform immediate actions as well as provide evidence to evaluate policies and set priorities.

The areas of priority for action include:

3.1 Strengthen reference laboratory capacity in the country and increase access to microbiology support for primary care and veterinary services.

3.1.1 Establish molecular typing capability for key resistant organisms.

3.2 Strengthen surveillance systems of antibiotic resistance, especially in primary care and in veterinary practice.

3.3 Focus surveillance on priority organisms and drug-bug combinations most relevant to Human Health (Table 2). Regularly review and update the list in response to the changing incidence of resistant organisms.

<table>
<thead>
<tr>
<th>Rationale</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact in both hospital and community</td>
<td>Enterobacteriaceae (primarily Escherichia coli and Klebsiella pneumoniae)</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Impact mainly in hospital</td>
<td>Acinetobacter baumanii</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td></td>
<td>Clostridium difficile</td>
</tr>
<tr>
<td>Impact mainly in community</td>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td></td>
<td>Salmonella species</td>
</tr>
<tr>
<td></td>
<td>Campylobacter jejuni</td>
</tr>
<tr>
<td></td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td></td>
<td>Neisseria gonorrhoeae</td>
</tr>
</tbody>
</table>

Table 2: List of priority organisms AMR surveillance in Human Health (based on WHO recommendations for global AMR surveillance)

3.4 Establish and implement a nationally representative and coordinated programme for surveillance of antimicrobial usage in hospitals, the community, environment, animal and aquatic medicine and agriculture, in both food and non-food, and aquatic production, including by sector and by antibiotic (broad and narrow).

3.4.1 Establish a comprehensive programme for at-source monitoring of antimicrobial residues in food animals and in the environment.
3.5 Strengthen systems to feedback data on antimicrobial resistance and antibiotic consumption used in human and animal care and produce an annual AMR report for Malta.

3.6 In the community, establish a sentinel AMR surveillance system in primary care with timely feedback and trend analysis.

Objective 4: Infection Prevention and Control

Improve infection prevention and control measures across Human Health and Animal Health settings to help prevent infections and the spread of antimicrobial resistance.

Malta has been implementing several actions related to IPC including the introduction of dedicated IPC personnel in acute care and rehabilitation hospitals and the introduction of a focal point of IPC expertise in MDH. These actions have led to several success stories of improved processes and outcomes within tertiary care. However, additional actions need to be implemented, particularly in community and environment settings.

Further priority actions include:

4.1 Implement and enforce national IPC regulations that include minimum/core infection prevention and control standards for primary, tertiary, rehabilitation and residential settings, and establish plans to monitor and evaluate their effectiveness.

4.2 Establish national IPC coordination and oversight including national IPC guidelines and a healthcare associated infection surveillance programme, covering all public and private healthcare entities.

4.3 Implement IPC multi-modal strategies commensurate for all healthcare facilities, through a properly functioning IPC programme managed by dedicated, trained professionals with clear structures of administrative responsibility and accountability for its implementation.

4.4 Establish structure, process and outcome Key Performance Indicators (KPIs) to allow monitoring and evaluation of IPC activities and structures of healthcare facilities at national and institutional level, to ensure uniformity in competence and output.

4.5 Designate the control of CRE as a national priority and address it through specific, funded, interventions outlined in a CRE Action Plan for Malta.

4.6 Improve hygiene standards in farms to prevent cross-transmission of animal pathogens.
Objective 5: Training, Continuous Professional Development and Education

Through education and training, increase awareness and understanding of AMR, its implications, and actions to combat it.

Education of all stakeholders involved in combatting AMR is a critical component of any Strategy. Unless all the players are aware of the problem, and the solutions available, it will be impossible to achieve urgency – the first and essential component of behaviour change.

The following actions will be implemented:

5.1 Enhance the knowledge and awareness on AMR among healthcare and veterinary professionals by ensuring the availability of continuing professional education activities, on AMR and prudent use of antibiotics, not sponsored by industry.

5.1.1 Include a minimum of one continued medical education (CME) session on antibiotic use per year as part of any reaccreditation schemes for all those professionals who prescribe and dispense antibiotics, with an emphasis on multidisciplinary events to enhance inter-professional communication and improved outcomes.

5.1.2 Facilitate educational activities on AMR and antibiotic use for other professions including nursing and allied health.

5.2 Review professional training during undergraduate and postgraduate medical training and programmes and ensure inclusion of AMR, prudent antibiotic use and infection prevention and control as a defined contact time during undergraduate courses for healthcare professionals, post-graduate training schemes and continuing professional development of specialists.

5.3 Provide health and veterinary professionals with communication resources to support informed decision making regarding treatment and to support efforts to educate clients regarding appropriate antibiotic use and effective infection prevention and control practices each time they prescribe, dispense or provide advice about antibiotics.

5.4 Develop and implement regular campaigns to communicate, engage and educate the public on antibiotics and their use as well as AMR, making full use of conventional and social media platforms.

5.5 Expand educational Animal Health campaigns aimed specifically at farmers, animal and pet owners emphasising the risks of non-prescribed use of antibiotics or acquisition of antibiotics from unlicensed sources as well as the benefits and cost-effectiveness of greater hygiene.

5.6 Include topics on AMR, hygiene and antibiotic use in the curricula of primary and secondary schools to ensure children are educated about the problem from an early age.
Objective 6: Research and Performance Measurement

Strengthen the research agenda through consensus, coordination and collaboration.

Research initiatives are essential to strengthen the knowledge and evidence base of AMR. In addition, research can provide the basis for devising and implanting more effective interventions to address AMR. It is therefore of great importance that research is actively promoted and supported.

The following will be priority areas:

6.1 Agree on a national research agenda to address issues related to AMR.

6.2 Coordinate national AMR research activities and the sharing of information.

6.3 Explore and identify opportunities to increase support for research and development, including possible funding sources.

Objective 7: International partnerships and collaboration

Strengthen international partnerships and collaboration on regional, European and global efforts to respond to antimicrobial resistance.

The increasing movement of people, animals, foods and other products has the potential to facilitate the movement of resistant pathogens across borders faster and further than ever before. Growth in tourism, including the travel of people to another country to obtain medical treatment in that country, has accelerated the international spread of AMR, further highlighting the global nature of the problem.

Malta’s AMR Strategy will be less effective if it is not aligned with international efforts. To support global efforts to reduce the spread of resistant organisms, Malta must continue to actively collaborate with European countries, especially those in the Mediterranean as well as international organisations through strategic policy support, regulatory action and coordinated initiatives.

Priority will be given to:

7.1 Continue to actively engage with European and International Fora.

7.2 Participate in international surveillance initiatives.
8. **WAY FORWARD**

The Strategy supports a collaborative effort through a One Health Approach to enhance those practices that encourage the appropriate and prudent use of antibiotics, change those practices that have contributed to the development of resistance and implement new initiatives to reduce inappropriate antibiotic usage and resistance. It builds on the good practices already being implemented by integrating new and existing programmes and initiatives into a unified, national response.

Implementation of the priority areas identified will take a staged approach over the life of the Strategy. It will involve many stakeholders and require a high level of cross sectoral cooperation at both the national and international levels. The Strategy can only be successful if all stakeholders heed its call to action and actively look for opportunities to develop new whilst strengthen existing partnerships to support the achievement of the Strategy’s objectives.

The Strategy will be regularly reviewed and updated so that it remains reflective of the work that is underway, and action plans for the future.

Owners: Intersectoral Co-Ordinating Mechanism (Superintendence of Public Health through the National Antimicrobial Committee)

Review Dates: 2021 and 2025
Bibliography

WHO. GLOBAL ACTION PLAN ON ANTIMICROBIAL RESISTANCE [Internet]. 2015 [cited 2018 Jan 24]. Available from: http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1
Appendix 1: Local AMR Epidemiology

Human Health

AMR epidemiology

Malta is not immune from the significant challenges from AMR that all countries are facing, which – unless effectively addressed – will have significant patient safety consequences. In common with most Mediterranean countries, several drug-bug resistance combinations are locally prevalent in greater proportions than other EU regions, especially Scandinavia, that tend to report low resistance. Furthermore, these local challenges manifest themselves in both hospital as well as community settings.

Hospital

Staphylococcus aureus

For over a decade, since its initial participation in EARSS and now EARS-Net, Malta has reported one of the highest prevalence of MRSA in Europe. Indeed, the proportion of MRSA, isolated from blood cultures was, for many years, greater than 50%.

Prevalence of CRE in European countries; countries in brown report the highest levels and are deemed as endemic for these organisms (source: ECDC 2015).
However, over the past years, a significant improvement in MRSA bacteraemia incidence has been achieved in MDH, following the launch of a hospital wide AMR Strategy in 2010. The cornerstone of the initiative was a policy of Root Cause Analysis and subsequent corrective action. As a result, the median yearly incidence of MRSA bacteraemia has reduced by more than 70% since the start of the campaign.

![Incidence of healthcare associated MRSA in Mater Dei Hospital (source: Infection Control Department 2018)](image)

Clostridium difficile

Clostridium difficile is traditionally regarded, as only secondary to MRSA in terms of healthcare transmission importance. Nevertheless, for as yet unknown reasons, the incidence of *C. difficile* in Malta has historically been significantly lower than most of European countries, despite a high level of antibiotic use.

Acinetobacter baumannii

Multi-resistant *Acinetobacter baumannii* is highly prevalent in many Mediterranean countries, especially in the Balkans. This organism was also regularly isolated from patients in the Intensive Therapy Unit (ITU) of St. Luke’s Hospital, where several outbreaks were reported. However, since the migration to MDH and as a direct consequence of numerous initiatives within this department to improve infection prevention and control practices, incidence of MDR *A. baumannii* has reduced significantly.
Carbapenem resistant Enterobacteriaceae (CRE), especially *Klebsiella pneumoniae*, have been reported in several European hospitals. In Malta, the local threat from these organisms is higher than that reported in most EU countries. Indeed, Malta is one of only three EU countries that are regarded as endemic for CRE. In addition, New Delhi Metallo beta-lactamase producing (NDM-1) strains of CRE, almost resistant to all antibiotics, are locally increasing in incidence; at least one outbreak has been reported.

CRE infections have, almost certainly, become Malta’s greatest AMR threat. Extensive Drug Resistant (XDR) strains are increasing on a yearly basis and Pandrug resistant (PDR) isolates of *Klebsiella pneumoniae* – resistant to all known antibiotics – have started to be detected.

![Prevalence of CRE in European countries; countries in brown report the highest levels and are deemed as endemic for these organisms (source: ECDC 2015)](image)

![Yearly isolates of imipenem resistant *Klebsiella pneumoniae* in Mater Dei Hospital (source: Infection Control Department, 2018)](image)
Yearly isolates of XDR Klebsiella pneumoniae (resistant to all antibiotics except colistin) in Mater Dei Hospital (source: Infection Control Department 2018)

COMMUNITY

Staphylococcus aureus

Incidence of MRSA in the community setting has reached worrying levels. Approximately 30% of *S. aureus* isolates from samples sent from health centres are meticillin resistant. A study looking at MRSA carriage rate amongst healthy individuals, without any hospital treatment in the previous year, found carriage to be above 8%; this is one of the highest recorded levels in the literature. Misuse and overuse of antibiotics in the community are thought to be responsible for such high MRSA levels, including abuse of topical antibiotics.

Escherichia coli

Community strains of *E. coli* exhibit high resistance levels to ciprofloxacin; substantial proportions also exhibit evidence of extended spectrum beta-lactamase (ESBL) production. Antibiotic misuse and overuse is thought to be the major driver behind such trends and an association has been shown between *E. coli* resistance and the consumption of beta-lactam antibiotics and quinolones in the community.

Streptococcus pneumoniae

Streptococcus pneumoniae is the most important community pathogen causing lower and upper respiratory tract infections. Although it remains relatively sensitive to penicillin, local resistance to macrolides is a concern.
Antibiotic consumption

The current knowledge base on trends and levels of use of antimicrobial agents suggests that major challenges are present in the community. Nevertheless, non-prescribed use of antibiotics has reduced drastically from more than 18% in 2002 to around 1%, as reported by the 2016 Eurobarometer survey. However, the same cannot be said for inappropriate prescribing. Almost half of the Maltese participants in the same survey reported being prescribed at least one antibiotic during 2015; more worryingly, the vast majority of them said that it had been prescribed for a cold, flu or sore throat - conditions for which antibiotics are not normally indicated. The vast majority of antibiotics prescribed in the community are broad spectrum in nature; co-amoxiclav, cefuroxime and ciprofloxacin are the three most common; these are greater drivers of resistance than their narrower spectrum equivalents.

![Proportion of EU citizens who took at one oral antibiotic (in tablet, powder or syrup form) from April 2015 to March 2016 (source: Special Eurobarometer 445)](chart)

Trends of antibiotic consumption within MDH have stabilized in recent years, especially in high consuming units such as intensive care, nephrology and haematology, where antibiotic stewardship programmes have been successfully introduced. Nevertheless, use per capita is well above the European average. Additionally, the over-use of broad spectrum products (especially carbapenems) remains a challenge together with excessively prolonged and unnecessary use of antibiotics for surgical prophylaxis.
Consumption of antibacterials for systemic use (ATC group J01) in the hospital sector in EU/EEA countries at group level 3, expressed as DDD per 1 000 inhabitants per day (source: ECDC 2017)

Healthcare associated infections

Data about the prevalence of HAI is mainly available only for MDH, the sole tertiary care hospital that provides the bulk of hospital care in the country (>90%). Results from the 2011-2012 European Point Prevalence Survey (PPS), undertaken by ECDC, placed the prevalence of HAI in Maltese hospitals at the lower half of the European median; the actual prevalence was lower than what could be predicted from patient characteristics and case mix. In addition, significant improvement has been registered in the incidence of bloodstream infections in intensive care as well as several types of surgical site infections, especially those related to prosthetic hip and knee replacement surgery.
Animal Health

AMR Epidemiology

Information on AMR in isolates of animal origin remains extremely sparse and restricted to a limited set of isolates tested annually at the National Veterinary Laboratory in compliance with EU minimal requirements. Yet, even from this limited information, it is clear that AMR in animals is likely to be a significant problem. Almost half of *Salmonella* poultry isolates, tested in 2014, were resistant to ciprofloxacin – a crucial antibiotic in human medicine. At the same time, 86% of *E. coli* strains from the same source were resistant to the same antibiotic. Only 19.1% of *E. coli* strains isolated from pigs in 2015, were completely susceptible to all tested antibiotics.
There are currently no laboratories in Malta that can provide a suitable service for performing routine diagnostic and susceptibility tests. As a result, samples must be sent to other countries for analysis but this is rarely done due to the costs, logistical issues (e.g. ensuring suitable conditions for sample transport) and time taken to receive the result.

Malta is not currently carrying out testing under Commission Implementing Decision 2015/495/EU 6 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. No other activities are underway which could address environmental aspects of AMR.

Antibiotic consumption

Detailed epidemiological information on antibiotic use in Malta is significantly restricted since the country does not yet collect statistics antibiotic consumption used in veterinary practice and report it the ESVAC network. Efforts to obtain an overview of the sales of veterinary antimicrobials have been made by the Veterinary Regulation Directorate (VRD). Wholesalers have been requested to submit a summary of their annual sales by weight according to a range of categories set out on a standardised form. The majority of wholesalers have attempted to provide the data requested. However, these were often incomplete or of variable quality. Anecdotal feedback suggests that the conditions for which antimicrobials are mostly used in the different species are: cattle – mastitis, pigs – respiratory disease, horses, dogs and cats – skin disease. Many older antibiotics e.g. penicillins, tetracyclines, are cited as the most frequently prescribed antibiotic classes to treat the main food producing species. Critically Important Antibiotics, used in human medicine, are said to be used to treat urinary disease in cats, respiratory disease in cattle,
diarrhea in cattle and pigs, locomotion disorders in cattle, post-partum dysgalactia syndrome in pigs and dental disease in dogs. There is evidence of metaphylactic use of penicillins in the rearing of broilers.

Although Regulation 60 of Subsidiary Legislation 437.47, requires all antimicrobials to be obtained following a veterinarian’s prescription, it is known that these pharmaceuticals are locally sourced from a range of sources including from other farmers, visiting veterinarians, from other Member States and direct personal imports. The quantities of antimicrobials sourced in such ways is not known. These issues also present challenges for the implementation of policies for the prudent use of antimicrobials.
APPENDIX 2: CURRENT STRENGTHS AND DEFICITS IN ADDRESSING AMR IN MALTA

1 Legislation and infrastructure

Current strengths:
• Presence of an ICM in the form of the NAC.
• Impact of previous initiatives aimed at over-the-counter (OTC) and public awareness, albeit on a limited scale.

Current deficits:
• Absence of a budget inhibits effective planning of NAC initiatives.
• Limited consultation / involvement of professional associations / stakeholders expected to implement parts of the action plan.
• The personal capacity of NAC membership could result in limited involvement of professional associations and other stakeholders.
• Lack of appointed administrative support reduces the execution of NAC activities and functions, since the voluntary NAC members already have other major commitments.
• Lack of effective legislation, especially setting minimum IPC standards for hospitals and nursing homes.
• Absence of appropriate legislation in Animal Health that provides the necessary tools for effective intervention and regulation, especially in food animal husbandry.
• Ubiquitous definitions of prescription-only medicine for antibiotics which are neither used for treatment of humans nor used in animals and their food.
• Insufficient enforcement of ‘prescription-only’ dispensing of antimicrobials for veterinary use.

2. Antibiotic stewardship

Current strengths:
• A dedicated pool of specialists in antibiotic management.
• Strong antibiotic stewardship programmes (including guideline development) in hospital care, especially at MDH.

Current deficits:
• Evidence of inappropriate prescribing in the community for primarily viral infections such as colds, flu and sore throat.
• Unnecessary prescribing of broad spectrum formulations in ambulatory care, partly as a result of unavailability of older narrow spectrum antibiotics in private pharmacies.
• Excessive reliance on “last-resort” antibiotics at hospital level, especially carbapenems and glycopeptides.
• Major challenges in veterinary practice with anecdotal evidence of acquisition of antibiotics from unlicensed sources and direct medication of animals by farmers.
3. **Surveillance**

Current strengths:
- Extensive surveillance data on antimicrobial resistance in governmental hospitals.
- Robust antibiotic consumption data for MDH, the main hospital in the country.
- Audited IPC outcome and process indicators for MDH, including trends of incidence of multi-resistant organisms such as MRSA and CRE, as well as hand hygiene compliance, use of alcohol hand rub, etc.

Current deficits:
- Surveillance of AMR in community infections and residential care is weak; available data invariably originates from samples taken from infections after lack of response to primary treatment, resulting in a bias towards resistance.
- Data on antibiotic consumption is restricted to global wholesaler statistics. The predominance of the private nature of general practice coupled with the lack of electronic prescribing and electronic dispensing records makes it impossible to identify and address doctors who prescribe significantly more antibiotics than their peers.
- Absence of e-prescribing systems in both community, hospital and veterinary settings makes it impossible to study consumption at patient and diagnosis level.
- There are major lacunae in veterinary practice, where information on AMR prevalence and antibiotic use is almost completely lacking. Malta does not participate in the ESVAC network.
- Feedback of surveillance data to users, especially to community practitioners, is sub-optimal.

4. **Infection Prevention and Control**

Current strengths:
- Presence of dedicated Infection Prevention and Control (IPC) personnel in acute care and rehabilitation hospitals.
- Focal point of IPC expertise in MDH.
- Several success stories of improved processes and outcomes, especially at tertiary care.

Current deficits:
- Considerable heterogeneity in IPC activities among acute care and rehabilitation hospitals.
- Lack of national standardisation, coordination and oversight.
- Sub-optimal ownership and accountability structures to support implementation.
5. Training, Continuous Professional Development and Education

Current strengths:
- Coverage of IPC and antibiotic stewardship in some undergraduate courses.
- Past NAC experience in organising activities for European Antibiotic Awareness Day.
- Successful interventions to reduce over-the-counter acquisition of antibiotics.

Current deficits:
- Low level of knowledge about antibiotics among the public.
- Lack of appointed administrative support reduces the execution of NAC activities.
- Inadequate inclusion of AMR in post graduate training.

6. Research and Performance Measurement

Current strengths:
- Interest in under and postgraduate students to undertake dissertations and audits on AMR related topics.
- Experienced and enthusiastic researchers, willing to dedicate time over and above clinical duties.

Current deficits:
- Economies of scale make large research projects difficult.
- Budgetary constraints even for smaller research projects.
- Lack of infrastructure and paucity of dedicated research personnel for AMR research.

7. International partnerships and collaboration

Current strengths:
- Participation in EU networks has provided opportunities to network with peers and to learn from successful experiences in other countries.

Current deficits:
- Lack of focused initiatives with countries in the Mediterranean region who share many of the infrastructural, cultural and logistical challenges that are key factors in driving AMR locally.